
1.
2.

Using Properties in Deployment and Resolution
Introducing Matrix Parameters

Matrix parameters key-value pairs parameters separated by a semicolon (;) that you can place anywhere
on a URI.

This is a method for specifying parameters in HTTP (in addition to querying parameters and standard
path parameters).

For example:

http://repo.jfrog.org/artifactory/libs-releases-local/org/libs-releases-local
/org/jfrog/build-info-api/1.3.1/build-info-api-1.3.1.jar;status=DEV;rating=5

Artifactory makes use of matrix parameters for:

Adding properties to artifacts as part of deployment
Controlling artifact resolution using matrix parameters

Page Contents

Introducing Matrix
Parameters
Dynamically Adding
Properties to Artifacts on
Deployment
Controlling Artifact
Resolution with Matrix
Parameters Queries

Non-mandatory
Properties
Mandatory
Properties

Dynamically Adding Properties to Artifacts on Deployment

You can add key-value matrix parameters to deploy (PUT) requests and those are automatically transformed to properties on the deployed artifact.

Since matrix parameters can be added on any part of the URL, not just at the end, you can add them to the target deployment base URL. At the time
of deployment, the artifact path is added after the matrix parameters and the final deployed artifact will be assigned the defined properties.

You can even use dynamic properties, depending on our deployment framework.

When using Maven, for instance, you can add two parameters to the deployment URL: and , which Maven replaces at buildNumber revision
deployment time with dynamic values from the project properties (e.g. by using the Maven build-number plugin).

So, if you define the distribution URL as:

http://myserver:8081/artifactory/qa-releases;buildNumber=${buildNumber};revision=${revision}

And deploy to the repository a jar with the following path:qa-releases

/org/jfrog/build-info-api/1.3.1/build-info-api-1.3.1.jar

Upon deployment the URL is transformed to:

http://myserver:8081/artifactory/qa-releases;buildNumber=249;revision=1052/org/jfrog/build-info-api/1.3.1
/build-info-api-1.3.1.jar

And the deployed has two new properties:build-info-api-1.3.1.jar

buildNumber=249
revision=1052

Controlling Artifact Resolution with Matrix Parameters Queries

Matrix parameters can also be used in artifact resolution, to control how artifacts are found and served.

There is currently support for two types of queries:

Non-conflicting values
Mandatory values.

Permissions to attach properties

You must have the 'Annotate' permission in order to add properties to deployed artifacts.

http://www.w3.org/DesignIssues/MatrixURIs.html
http://repo.jfrog.org/artifactory/libs-releases-local/org/libs-releases-local/org/jfrog/build-info-api/1.3.1/build-info-api-1.3.1.jar
http://repo.jfrog.org/artifactory/libs-releases-local/org/libs-releases-local/org/jfrog/build-info-api/1.3.1/build-info-api-1.3.1.jar

Non-mandatory Properties

Resolved artifacts may either have no property with the key specified, or have the property with the key specified and the exact value specified (i.e.
the artifact is resolved if it has a property with a non-conflicting value).

Non-mandatory properties are identified by a simple parameter.key=value

For example:

Current Artifact Property Matrix Parameter Resolution Result

color=black color=black OK (200)

None or height=50 color=black OK (200)

color=red color=black NOT_FOUND (404)

Mandatory Properties

Resolved artifacts must have a property with the key specified and the exact value specified.

Mandatory properties are identified with a plus sign (+) after the property key: .key+=value

For example:

Current Artifact Property Matrix Parameter Resolution Result

color=black color+=black OK (200)

None or height=50 color+=black NOT_FOUND (404)

color=red color+=black NOT_FOUND (404)

	Using Properties in Deployment and Resolution

