Logging
Overview

The JFrog Platform provides standardized logs for all JFrog products and their services. All logs include
a standard format and naming convention.

This page describes the different available logs, their location in the system directory and how they
should be used.

@ Additional References

For more information, see the System Architecture and System Directories pages.

Log Files Location and Naming

For each JFrog service you will find its active log files in the $JFROG_HOME/ <pr oduct >/ var /| og direct
ory. For consistency, each log file is prefixed by its service name and a dash, <ser vi ce- nane>-
servi ce. | og. For example, arti factory-service.l ogandrouter-request.| og.

The following log files are included for all JFrog Services:

Service Log | <service-name>- Main service log file for each microservice, containing
service. | og data on the service activity.
For example: arti f act or
y-service.log

Request <servi ce- nane>- Lists all http requests (including gRPC) that were
Log request .| og made to the service.

For example: arti f act or

y-request.| og

Outbound <servi ce- name>- Lists all the remote requests initiated by a remote
Request request-out. | og repository and replication.
Log For example: arti f act or

y-request-out.| og
Console console.log Combined log file that contains server activity for all
Log microservices.

In Windows, microservices will have separate console
log files named <service-name>-console.log

Archived Logs

Each log file has default rolling policy which will compress the log file and move it to the $JFROG_HOVE
/ <pr oduct >/ var/1 og/ ar chi ved folder.

Log File Structure

Page contents

Overview
® Archived Logs
Log File Structure
® Service Log
® Request Log
® Qutbound
Request Log
® Router Request
Log
® Console Log
Viewing Log Files from the

Sending Logs to Syslog
® Configure the
logback library
® Configure syslog
on your machine
Configuring Log Verbosity
® Using logback
(Java based
microservices)
® Using system.
yaml (non Java
microservices)

The Request and Access log files each display specific type of activity and as such have a consistent and specific file structure for maximum

readability

Service Log

The service log file console pattern uses colors to highlight the service type and message level. On Windows console colors should be disabled.

https://www.jfrog.com/confluence/display/JFROG/System+Architecture
https://www.jfrog.com/confluence/display/JFROG/System+Directories

tifactoryHomeConfiglistene
ontextConfiglListener

7.%~-SNAPSHOT
2147483647

ctor

[ifrt]
[ifac]
[ifac]

[ifactoryApplicationContext:518] [art-init 7 - Artifactory application context set to NOT READY by refresh
[.m.CertificateMigrationImpl:71] [ocalho: tion] Recreating root certificate to match current certificate version
[.m.CertificateMigrationImp1:93] [ocalhost-st C i tion] Creating root certificate fi
a talina. startup.H nfig] [org.apa a a . nfig deployDescriptor] - Deployment of yossis;
[.m.CertificateMigrationImpl:82] C tion] Saved ne : a y -7.X-SNAPSHO
rpcServerInpl:59] ing gRPC er on port 8645
C Server started, listening on 8845
SS. BOOTSTRAP] Updating yo: ac' private key finger print to: dé618c7ed8aZe4bcaaab
[ACCESS BOOTSTRAP] No admin user exists - generating an admin user, credentials will be saved to
erverBootstrapImpl:14] [ACCESS BOOTSTRAP] JFrog
RefreshableScheduledlob:53] a heduling staleTokenCleanup task to run every 360 nds
eduledlob:53] heduling loadCertificates task to run eve
eduledlob:53] a heduling federationCleanupService task to run every 1209660 seconds
heduling heartbeat task to run every 5 onds
a.AccessApplication:59] Started ssApplication in 14.288 seconds (JVM running for 15.854)
pache . catalina. startup.H nfig] [org.apa ali a . Config deployDescriptor] - Deployment of iguration d
talina.startup.HostConfig] [org.apa a a -HostCs g deployDirectory] - Deploying web application dir
.startup.HostConfig] [org.apache. . .HostConfig deployDirectory] - Deployment of
apache. coyote.httpll.HttpliNioProtocol] [org.apache.coyote.AbstractProtocol
ache. coyote.httpll.HttpliNioProtocol] [org.a . cay . rt] - Starting ProtocolHandler [“http-nio-8840"
d.DbServiceImpl:27 [art-init a i Api 14.2.@ - (1828579). Driver: Apache Derby Embedded JDBC Driver 10.14.2

[INFO]
[ifac]
[ifac]
[ifac]
[jfac 1
[ifac]
[ifac 1
[jfac]
[ifac]
[ifac]
[jfac J
[ifac]
[INFO]
[INFO]
[INFO]
2019-08-22T09:32:37. [INFO]
2019-08-22T09 [INFO]

L L L L L L L L L L L L L L L e L L L

. [art-init

1adcaa75314d] c \ [http-nio-8048-ex

[art-init a ase schema created***

1ladcaa75314d] . [http-nio-8248-exec cheduling federationCleanupService task to run every 1209600 se

[jf- ~taskl Running clean up outdated Federation events

0.256Z 2c6ladcaa75314d] :6@] [http-nio-804@-exec join: suc returning token with id fefe3-al59-475e-957e-dbbe@bdd49f23 nodeld yossis
2572 ladcaa75314d] [.r.) [http-nio-804@-ex: join request return token with id 2ZZfefe3-al59-475e-957e-dbbe@bd49723
[bootstrap.go:59 [main TLS disabled for external communication
[routing_handler.go [main] - clearing routing dir contents: 7.X-SNAPSHOT/var/dat
[server_handler.go:62 [main rpc server listening on: lo
[routing_handler.go:7 [main earing routing dir / g Y X~ SNAPSHO'
i [routing_handler.go: [main clearing routing dir c y a a y 7. X-SNAPSHO'
2019-08- fr [routing_handler.go: [main creating router routing file at y ifactory 7 .- SNAPSHO

[y

Service log file record structure

Ti nestanp (UTC) [Service Type] [Level] [Trace Id] [Oass and Line Nunber] [Thread] - Message

Service log file record sample

2018-11-18T15:39: 04.902Z [jfac] [INFO] [4b1b8a0b04e31b80] [s.r.NodeRegi stryServicel npl:44] [http-exec-

4] - request to "join" with serviceld jffe@O00
Value Description Example
Timestamp The date and time the message was logged, in UTC time with the standard format: [yyyy-MM- 2018- 11-18T15: 39:
dd'T'"HH:mm:ss.SSSZ] based on RFC-3339 04. 902z

Service Type The service type, color coordinated with a specific color for each service, including: [jfrpg]

® Artifactory: Bright Green

® Access: Yellow

® Event: Bright Cyan

® Router: Cyan

® Tomcat: Magenta

® Metadata: Bright Blue

[]

Xray: Yellow

Cross product services (such as router, tomcat, scripts) use the same color.

https://tools.ietf.org/html/rfc3339

Level

The service identifier as a 4 to 6 character long, including:

JFrog Product

Artifactory

Xray

Distribution

Mission Control
(Below version 4.7)

Pipelines

Installer

Service Name

Artifactory

Access

Router
Metadata
Frontend

Event
Replicator
JFLink

Mission Control
Integration
Observability
Server
Analysis
Indexer

Persist
Indexer-App
Distribution
Distributor
Mission Control
Insight Server
Insight Schedular
extensionsync
Logup
Marshaller
Hook Handler
Nexec

Cron

Step Trigger
Run Trigger
Pipeline Sync
Template Sync
Request Sealer
Frontend

Api

Pipelines router

Installers Commons

Service ID

jfrt
(legacy: jf-artifactory)

jfac
(1 egacy: jf-access)
jfrou
jfrd
jffe

j fevt
jfrep
jfcon
jfnc
jfint
jfob

j fxr

j fxana
j fxidx
j fxpst
jfxia
j fds
jfdr
jfnc
jfisv
jfisc
j fpes
jfplog
j fpmar
j fphh
j fpnex
jfpcrn
j fpst
jfprt
jfpps
jfpts
jfprs
j f pvwww
j f papi
jfprou

jfin

[jfrt]

Trace Id The trace id value. Trace id is used to identify a request across services 4b1b8a0b04e31b80

Class and Line @ The fully qualified class name and line number printing this log entry. S.r.

Number NodeRegi st rySer vi cel
npl : 44

Thread The thread printing this log entry. "main” if not java. [htt p-exec-
4]

Message The log entry message. Hel | o JFrog

Request Log

The request log file pattern contains a list of pipe ("|") separated values. The file pattern will contain the same number of columns, if a value is missing
it will be empty.

Note: If not provided by the client, the 'Request Cont ent - Lengt h' value is initialised as "- 1".
Request log file record structure

Tinmestanp | Trace 1D | Renpote Address | Username | Request nethod | Request URL | Return Status | Request
Content Length | Response Content Length | Request Duration | Request User Agent

Request log file record sample

2018- 11- 18T15: 39: 04. 902Z| d5d75b3c41242768| 127. 0. 0. 1| anonynous| GET| api / vl/ cert/root| 200| 0| 6] O] JFrog Access
Java Cient/4.1.12

Value Description Example

Timestamp The date and time the request was completed and entered into the log file, in UTC time with the | 2018- 11- 18T15: 39:
standard format: [yyyy-MM-dd'T'"HH:mm:ss.SSSZ]. 04. 902z

Trace ID The trace id value. 4b1b8a0b04e31b80
Remote The IP address of the remote caller (ipv4 or ipv6). 10.0.12.3
Address

Username The requesting user's username or "anonymous" when accessed anonymously. benn

Request method ' The HTTP request method, in UPPERCASE. GET, PUT
Request URL The relative URL for the request. api/vl/cert/root
Return Status The HTTP return code for the request. 201

Response The size of the server response in bytes, for example, the size of downloaded file.

Content Length -1 if unknown (for example, chunked encoding).

Request The size of the user request in bytes, for example, the size of an uploaded file. -1 if unknown.
Content Length

Request The time in ms for the request to process.

Duration

Request User The request user agent. JFrog Access Java
Agent Cient/4.1.12

Outbound Request Log

The r equest - out | og file pattern contains a list of pipe ("|") separated values. The file pattern will contain the same number of columns, if a value
is missing it will be empty.

Note: If not provided by the client, the 'Request Cont ent - Lengt h' value is initialised as "- 1".

Request log file record structure

Tinestanp | Trace ID| Renpte Repository Name | Usernane | Request nethod | Request URL | Return Status |
Request Content Length | Response Content Length | Request Duration

Request log file record sample

2021- 05-12T13: 58: 46. 686Z| 40ea218a769325db| generi c-renpt e| andr eyt | HEAD| htt ps: // acne.j frog. comlartifactory
/ generi c- packages/j dbc-drivers/ nssql -jdbc-7.4.1.jrell.jar|200] 1219373| 0| 80

Value Description Example

Timesta The date and time the request was completed and entered into the log = 2018-11- 18T15: 39: 04. 902Z

mp file, in UTC time with the standard format: [yyyy-MM-dd'T'HH:mm:ss.

SSS7].
Trace ID The trace id value. 4b1b8a0b04e31b80
Remote The name of the remote repository. generic-renote
Repository
Name
Username The requesting user's username or "anonymous" when accessed benn

anonymously.

Request | The HTTP request method, in UPPERCASE. GET, PUT

method

Remote The URL for the remote resource. https://acme.jfrog.com artifactory/generic-

URL packages/ j dbc-drivers/nssql -jdbc-7.4. 1.
jrell.jar

Return The HTTP return code for the request. 201

Status

Response | The size of the server response in bytes, for example, the size of

Content downloaded file.

Length -1 if unknown (for example, chunked encoding).

Request The size of the user request in bytes, for example, the size of an

Content uploaded file. -1 if unknown.

Length

Request The time in ms for the request to process.

Duration

Router Request Log
The JFrog Router has a JSON based access log containing all the requests that went through the Router, including service service communication.

Below is an example of an entry in the Router request log (router-request.log)

Router Request Log Entry

{
"BackendAddr": "http://1ocal host:8049",
"ClientAddr": "127.0.0.1:61899",
" Downst r eanCont ent Si ze": 2,
" Downst reantt at us": 200,
"Duration": 8353000,
"Request Met hod": "GET",
"Request Path": "/router/api/vl/ systenl ping",
"StartUTC': "2020-11-12T11:53: 03. 605300906Z",
"request _Uber-Trace-1d": "4ccb40200c199346: 1a3f 95celb27711d: 71e15f 8b6031c9e9: 0",
"request _User-Agent": "curl/7.54.0",
"tinme": "2019-08-05T14: 42: 09+03: 00",
"level": "info",
"negt: "

}

Value Description Example
BackendAddr @ Address of the backend server the request was forwarded to http://| ocal host: 8049
ClientAddr The IP address of the remote caller in its original form (ipv4 or ipv6, usually IP:port). 127.0.0.1: 61899
Downstream The number of bytes in the response entity returned to the client. 2

ContentSize

Downstream @ The HTTP return code for the request. 200
Status

Duration The time in nanoseconds for the request to process. 8353000

RequestMeth | The HTTP request method, in UPPERCASE. GET

od

RequestPath | The relative URL for the request. /rout er/ api/vl/ systeni ping
StartUTC The date and time request processing has started, in UTC time with the standard 2020- 11-12T11: 53: 03. 6053009062

format: [yyyy-MM-dd'T'HH:mm:ss.SSSSSSSSSZ].

request_Uber | The full trace id value. 4ccbh40200c199346:
Id 1a3f 95ce1b27711d:

-Trace-Id
71e15f 8b6031c9e9: 0
request_User | The request user agent. curl/7.54.0
-Agent
time The date and time the request was completed and entered into the log file, in UTC 2019- 08- 05T14: 42: 09+03: 00
time with the standard format: [yyyy-MM-dd'T'HH:mm:ss.SSSZ]
time / msg Default info and empty message
Console Log

The console log file appends the console outputs of all services into one common log file.

Log rotation is configured to occur every hour using a cron job for Docker Compose and native installations.

-

@ Log rotation is not available in the following installations:

1. Archive
2. Mac/Windows
3. Manual Docker Compose (which don't use the bundled script)

Since this file is written to by all services and can grow quickly, it is recommended to manage it by either by disabling it using the shar ed.
| oggi ng. consol eLog. enabl ed configuration in the Artifactory System YAML, or by setting up your own log rotation.

https://www.jfrog.com/confluence/display/JFROG/Artifactory+System+YAML#ArtifactorySystemYAML-SharedConfigurations

1 You have to configure log rotation manually for Tomcat logs. For more information, see Configuring Log Rotation for Tomcat.

Viewing Log Files from the Ul

You can view essential Platform log files from the UI.

@ Important Details

This feature is supported on a JFrog Self-Hosted solution only.

To view system logs:

1. In the Administration module, go to Monitoring | System Logs.
2. Select the JFrog service you want to view logs for.
3. Select the node.
4. Select the file you want to view.

The log tail view is automatically refreshed every few seconds, however can be paused and resumed if you wish to browse the log.

@ To save system resources, do not leave the log view open in your browser unnecessarily.

System Logs Viewer

Select Jfrog Service Select Node Select Log File

onds Il Pause & Refresh now

access-audit.log
access-request.log
access-security-audit.log
access-service.log
artifactory-access.log

artifactory-request.log

Sending Logs to Syslog

Some sites want to consolidate logs into the syslog facility. The following steps will enable you to send your Java microservices logs to syslog.

Configure the logback library

Edit the logback xml file in the $JFROG_HOVE/ <pr oduct >/ var/ et ¢/ <mi cr oser vi ce>/ | ogback. xm file. For example, to configure Artifactory
to use syslog, edit the $JFROG HOME/ arti factory/var/etc/artifactory/ | ogback. xm file.

1. Add the following syslog appender to the logback xml (next to the other appenders)

https://www.jfrog.com/confluence/display/JFROG/Configuring+Log+Rotation+for+Tomcat

<appender name="SYSLOG' cl ass= "ch. qos. | ogback. cl assi c. net. Sysl ogAppender ">
<sysl ogHost >l ocal host </ sysl ogHost >
<facility>SYSLOG</facility>
<suffixPattern>[% hread] % ogger %rsg</suffixPattern>

</ appender >

2. Add the following appender to the output:

<r oot >
<l evel val ue="warn"/>
<appender - ref ref="CONSOLE"/>
<appender-ref ref="FILE"/>
<appender -ref ref="SYSLOG'/>
</ root >

3. Save the file, and restart the service.

Configure syslog on your machine
Since logback is using internet sockets, you have to make sure your syslog facility accepts them. Modern Linux distributions are using the rsyslog

daemon for syslogging. Ensure that the configuration for internet domain sockets is enabled, either by editing / et ¢/ r sysl og. conf and
uncommenting:

Provides UDP sysl og reception
$ModLoad i mudp

$UDPSer ver Run 514

Provi des TCP sysl og reception
$ModLoad intcp

$I nput TCPSer ver Run 514

or placing it in a file under / et c/ r sysl og. d ending in . conf .

Restart rsyslog.

service rsyslog restart

Configuring Log Verbosity

There are two ways to configure log verbosity, depending on if your JFrog microservice is logback based (Java microservices) or not.

Using logback (Java based microservices)

The verbosity of any Java based logger in your system can be configured by entering or modifying the level value in the corresponding entry in the
Logback configuration file JFROG_HOME/ <pr oduct >/ var/ et ¢/ <mi cr oser vi ce>/ | ogback. xm . For example, to configure the Artifactory log
verbosity, edit the $JFROG_HOVE/ arti factory/var/etc/artifactory/| ogback. xn file.

Changes made to the logging configuration are reloaded within several seconds without requiring a restart.

Modifying the verbosity of a logger in logback.xml

<l ogger nanme="org.artifactory.http.out" |evel ="debug"/>

Using system.yaml (non Java microservices)

The verbosity of any non Java based logger in your system can be configured by entering or modifying the level value in the corresponding entry in
the syst em yam configuration file JFROG_HOVE/ <pr oduct >/ var/ et ¢/ syst em yan .

Changes made to the logging configuration requires a restart.

Modifying the verbosity of alogger in system.yaml|

frontend:
| oggi ng:
application:
level: info

	Logging

