
Logging
Overview

The JFrog Platform provides standardized logs for all JFrog products and their services. All logs include
a standard format and naming convention.

This page describes the different available logs, their location in the system directory and how they
should be used.

Log Files Location and Naming

For each JFrog service you will find its active log files in the <product>/var/log$JFROG_HOME/ direct
ory. For consistency, each log file is prefixed by its service name and a dash, <service-name>-

. service.log For example, artifactory-service.log and . router-request.log

The following log files are included for all JFrog Services:

Service Log <service-name>-
service.log
For example: artifactor
y-service.log

Main service log file for each microservice, containing
data on the service activity.

Request
Log

<service-name>-
request.log
For example: artifactor
y-request.log

Lists all http requests (including gRPC) that were
made to the service.

Outbound
Request
Log

<service-name>-
request-out.log
For example: artifactor
y-request-out.log

Lists all the remote requests initiated by a remote
repository and replication.

Console
Log

console.log Combined log file that contains server activity for all
microservices.
In Windows, microservices will have separate console
log files named <service-name>-console.log

Archived Logs

Each log file has default rolling policy which will compress the log file and move it to the $JFROG_HOME
 folder./<product>/var/log/archived

Page contents

Overview
Archived Logs

Log File Structure
Service Log
Request Log
Outbound
Request Log
Router Request
Log
Console Log

Viewing Log Files from the
UI
Sending Logs to Syslog

Configure the
logback library
Configure syslog
on your machine

Configuring Log Verbosity
Using logback
(Java based
microservices)
Using system.
yaml (non Java
microservices)

Log File Structure

The Request and Access log files each display specific type of activity and as such have a consistent and specific file structure for maximum
readability

Service Log

The service log file console pattern uses colors to highlight the service type and message level. On Windows console colors should be disabled.

Additional References

For more information, see the and pages.System Architecture System Directories

https://www.jfrog.com/confluence/display/JFROG/System+Architecture
https://www.jfrog.com/confluence/display/JFROG/System+Directories

Service log file record structure

Timestamp (UTC) [Service Type] [Level] [Trace Id] [Class and Line Number] [Thread] - Message

Service log file record sample

2018-11-18T15:39:04.902Z [jfac] [INFO] [4b1b8a0b04e31b80] [s.r.NodeRegistryServiceImpl:44] [http-exec-
4] - request to "join" with serviceId jffe@000

Value Description Example

Timestamp The date and time the message was logged, in UTC time with the standard format: [yyyy-MM-
dd'T'HH:mm:ss.SSSZ] based on RFC-3339

2018-11-18T15:39:
04.902Z

Service Type The service type, color coordinated with a specific color for each service, including:

Artifactory: Bright Green
Access: Yellow
Event: Bright Cyan
Router: Cyan
Tomcat: Magenta
Metadata: Bright Blue
Xray: Yellow

Cross product services (such as router, tomcat, scripts) use the same color.

[jfrpg]

https://tools.ietf.org/html/rfc3339

Level The service identifier as a 4 to 6 character long, including:

JFrog Product Service Name Service ID

Artifactory Artifactory jfrt
(legacy: jf-artifactory)

Access jfac

(legacy: jf-access)

Router jfrou

Metadata jfmd

Frontend jffe

Event jfevt

Replicator jfrep

JFLink jfcon

Mission Control jfmc

Integration jfint

Observability jfob

Xray Server jfxr

Analysis jfxana

Indexer jfxidx

Persist jfxpst

Indexer-App jfxia

Distribution Distribution jfds

Distributor jfdr

Mission Control
(Below version 4.7)

Mission Control jfmc

Insight Server jfisv

Insight Schedular jfisc

Pipelines extensionsync jfpes

Logup jfplog

Marshaller jfpmar

Hook Handler jfphh

Nexec jfpnex

Cron jfpcrn

Step Trigger jfpst

Run Trigger jfprt

Pipeline Sync jfpps

Template Sync jfpts

Request Sealer jfprs

Frontend jfpwww

Api jfpapi

Pipelines router jfprou

Installer Installers Commons jfin

[jfrt]

Trace Id The trace id value. Trace id is used to identify a request across services 4b1b8a0b04e31b80

Class and Line
Number

The fully qualified class name and line number printing this log entry. s.r.
NodeRegistryServiceI
mpl:44

Thread The thread printing this log entry. "main" if not java. [http-exec-
4]

Message The log entry message. Hello JFrog

Request Log

The request log file pattern contains a list of pipe ("|") separated values. The file pattern will contain the same number of columns, if a value is missing
it will be empty.

Note: If not provided by the client, the ' ' value is initialised as " ". Request Content-Length -1

Request log file record structure

Timestamp | Trace ID | Remote Address | Username | Request method | Request URL | Return Status | Request
Content Length | Response Content Length | Request Duration | Request User Agent

Request log file record sample

2018-11-18T15:39:04.902Z|d5d75b3c41242768|127.0.0.1|anonymous|GET|api/v1/cert/root|200|0|6|0|JFrog Access
Java Client/4.1.12

Value Description Example

Timestamp The date and time the request was completed and entered into the log file, in UTC time with the
standard format: [yyyy-MM-dd'T'HH:mm:ss.SSSZ].

2018-11-18T15:39:
04.902Z

Trace ID The trace id value. 4b1b8a0b04e31b80

Remote
Address

The IP address of the remote caller (ipv4 or ipv6). 10.0.12.3

Username The requesting user's username or "anonymous" when accessed anonymously. benn

Request method The HTTP request method, in UPPERCASE. GET, PUT

Request URL The relative URL for the request. api/v1/cert/root

Return Status The HTTP return code for the request. 201

Response
Content Length

The size of the server response in bytes, for example, the size of downloaded file.
-1 if unknown (for example, chunked encoding).

Request
Content Length

The size of the user request in bytes, for example, the size of an uploaded file. -1 if unknown.

Request
Duration

The time in ms for the request to process.

Request User
Agent

The request user agent. JFrog Access Java
Client/4.1.12

Outbound Request Log

The file pattern contains a list of request-out log pipe ("|") separated values. The file pattern will contain the same number of columns, if a value
is missing it will be empty.

Note: If not provided by the client, the ' ' value is initialised as " ". Request Content-Length -1

Request log file record structure

Timestamp | Trace ID | Remote Repository Name | Username | Request method | Request URL | Return Status |
Request Content Length | Response Content Length | Request Duration

Request log file record sample

2021-05-12T13:58:46.686Z|40ea218a769325db|generic-remote|andreyt|HEAD|https://acme.jfrog.com/artifactory
/generic-packages/jdbc-drivers/mssql-jdbc-7.4.1.jre11.jar|200|1219373|0|80

Value Description Example

Timesta
mp

The date and time the request was completed and entered into the log
file, in UTC time with the standard format: [yyyy-MM-dd'T'HH:mm:ss.
SSSZ].

2018-11-18T15:39:04.902Z

Trace ID The trace id value. 4b1b8a0b04e31b80

Remote
Repository
Name

The name of the remote repository. generic-remote

Username The requesting user's username or "anonymous" when accessed
anonymously.

benn

Request
method

The HTTP request method, in UPPERCASE. GET, PUT

Remote
URL

The URL for the remote resource. https://acme.jfrog.com/artifactory/generic-
packages/jdbc-drivers/mssql-jdbc-7.4.1.
jre11.jar

Return
Status

The HTTP return code for the request. 201

Response
Content
Length

The size of the server response in bytes, for example, the size of
downloaded file.
-1 if unknown (for example, chunked encoding).

Request
Content
Length

The size of the user request in bytes, for example, the size of an
uploaded file. -1 if unknown.

Request
Duration

The time in ms for the request to process.

Router Request Log

The JFrog Router has a JSON based access log containing all the requests that went through the Router, including service service communication.

Below is an example of an entry in the Router request log ()router-request.log

Router Request Log Entry

{
 "BackendAddr": "http://localhost:8049",
 "ClientAddr": "127.0.0.1:61899",
 "DownstreamContentSize": 2,
 "DownstreamStatus": 200,
 "Duration": 8353000,
 "RequestMethod": "GET",
 "RequestPath": "/router/api/v1/system/ping",
 "StartUTC": "2020-11-12T11:53:03.605300906Z",
 "request_Uber-Trace-Id": "4ccb40200c199346:1a3f95ce1b27711d:71e15f8b6031c9e9:0",
 "request_User-Agent": "curl/7.54.0",
 "time": "2019-08-05T14:42:09+03:00",
 "level": "info",
 "msg": ""
}

Value Description Example

BackendAddr Address of the backend server the request was forwarded to http://localhost:8049

ClientAddr The IP address of the remote caller in its original form (ipv4 or ipv6, usually IP:port). 127.0.0.1:61899

Downstream
ContentSize

The number of bytes in the response entity returned to the client. 2

Downstream
Status

The HTTP return code for the request. 200

Duration The time in nanoseconds for the request to process. 8353000

RequestMeth
od

The HTTP request method, in UPPERCASE. GET

RequestPath The relative URL for the request. /router/api/v1/system/ping

StartUTC The date and time request processing has started, in UTC time with the standard
format: [yyyy-MM-dd'T'HH:mm:ss.SSSSSSSSSZ].

2020-11-12T11:53:03.605300906Z

request_Uber
-Trace-Id

The full trace id value. 4ccb40200c199346:
1a3f95ce1b27711d:
71e15f8b6031c9e9:0

request_User
-Agent

The request user agent. curl/7.54.0

time The date and time the request was completed and entered into the log file, in UTC
time with the standard format: [yyyy-MM-dd'T'HH:mm:ss.SSSZ]

2019-08-05T14:42:09+03:00

time / msg Default info and empty message

Console Log

The console log file appends the console outputs of all services into one common log file.

Log rotation is configured to occur every hour using a cron job for Docker Compose and native installations.

1.
2.
3.

Log rotation is not available in the following installations:

Archive
Mac/Windows
Manual Docker Compose (which don't use the bundled script)

Since this file is written to by all services and can grow quickly, it is recommended to manage it by either by disabling it using the shared.
 configuration in the logging.consoleLog.enabled Artifactory System YAML, or by setting up your own log rotation.

https://www.jfrog.com/confluence/display/JFROG/Artifactory+System+YAML#ArtifactorySystemYAML-SharedConfigurations

1.
2.
3.
4.

1.

Viewing Log Files from the UI

You can view essential Platform log files from the UI.

To view system logs:

In the Administration module, go to Monitoring | System Logs.
Select the JFrog service you want to view logs for.
Select the node.
Select the file you want to view.
The log tail view is automatically refreshed every few seconds, however can be paused and resumed if you wish to browse the log.

Sending Logs to Syslog
Some sites want to consolidate logs into the syslog facility. The following steps will enable you to send your Java microservices logs to syslog.

Configure the logback library

Edit the logback xml file in the $JFROG_HOME/<product>/var/etc /logback.xml /<microservice> file. For example, to configure Artifactory
to use syslog, edit the file.$JFROG_HOME/artifactory/var/etc/artifactory/logback.xml

Add the following syslog appender to the logback xml (next to the other appenders)

You have to configure log rotation manually for Tomcat logs. For more information, see .Configuring Log Rotation for Tomcat

Important Details

This feature is supported on a JFrog Self-Hosted solution only.

To save system resources, do not leave the log view open in your browser unnecessarily.

https://www.jfrog.com/confluence/display/JFROG/Configuring+Log+Rotation+for+Tomcat

1.

2.

3.

<appender name="SYSLOG" class= "ch.qos.logback.classic.net.SyslogAppender">
 <syslogHost>localhost</syslogHost>
 <facility>SYSLOG</facility>
 <suffixPattern>[%thread] %logger %msg</suffixPattern>
</appender>

Add the following appender to the output:

<root>
 <level value="warn"/>
 <appender-ref ref="CONSOLE"/>
 <appender-ref ref="FILE"/>
 <appender-ref ref="SYSLOG"/>
</root>

Save the file, and restart the service.

Configure syslog on your machine

Since logback is using internet sockets, you have to make sure your syslog facility accepts them. Modern Linux distributions are using the rsyslog
daemon for syslogging. Ensure that the configuration for internet domain sockets is enabled, either by editing /etc/rsyslog.conf and
uncommenting:

Provides UDP syslog reception
$ModLoad imudp
$UDPServerRun 514
Provides TCP syslog reception
$ModLoad imtcp
$InputTCPServerRun 514

or placing it in a file under /etc/rsyslog.d ending in ..conf

Restart rsyslog.

 service rsyslog restart

Configuring Log Verbosity

There are two ways to configure log verbosity, depending on if your JFrog microservice is logback based (Java microservices) or not.

Using logback (Java based microservices)

The verbosity of any Java based logger in your system can be configured by entering or modifying the level value in the corresponding entry in the
Logback configuration file . JFROG_HOME/<product>/var/etc/<microservice>/logback.xml For example, to configure the Artifactory log

 file.verbosity, edit the $JFROG_HOME/artifactory/var/etc/artifactory/logback.xml

Changes made to the logging configuration are reloaded within several seconds without requiring a restart.

Modifying the verbosity of a logger in logback.xml

 <logger name="org.artifactory.http.out" level="debug"/>

Using system.yaml (non Java microservices)

The verbosity of any non Java based logger in your system can be configured by entering or modifying the level value in the corresponding entry in
the configuration file .system.yaml JFROG_HOME/<product>/var/etc/system.yaml

Changes made to the logging configuration requires a restart.

Modifying the verbosity of a logger in system.yaml

frontend:
 logging:
 application:
 level: info

	Logging

